If it's not what You are looking for type in the equation solver your own equation and let us solve it.
24x^2+5x-36=0
a = 24; b = 5; c = -36;
Δ = b2-4ac
Δ = 52-4·24·(-36)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-59}{2*24}=\frac{-64}{48} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+59}{2*24}=\frac{54}{48} =1+1/8 $
| 4(z+7)=10+2z | | 5^x=49 | | -5(3/7+4x)=-835/63 | | (3x-5)/12=(2x+7)/8 | | 27-11x+6=x-33 | | 4/x+1-3/x+2=1 | | (2*x+10)+(5*x+90)+2*x=360 | | (2+3i)(5-7i)=0 | | (0.7x-1)^(1/2)=1 | | (x+4)^2+3=28 | | (0.7x-1)^1/2=1 | | 2/3x+1/5=2x-4/5 | | 19=-3g-18 | | 2*x+5*x=80 | | 8c-6=-86 | | 2*x=80 | | 8c-6=36 | | 3×/5=2x/3+1 | | 12n=30n-63 | | 4m-10=2 | | -w/6+9=-2 | | 5(k-2)-4k=-5+6 | | 3(x-8)=-10 | | -4g+86=12 | | 3b-(6-3b)=8-b | | 5(t+2)-4t=5 | | 3(x-8=-10 | | G(x)=2|x|+3 | | 1.5n+30=0.5n+30 | | 40d^2-7d-21=0 | | 1/4x+7/16=11/7/16 | | -2/d+3=11 |